Efficacy of code optimizations on cache-based processors

Rob F. Van der Wijngaart
MRJ Technology Solutions
NASA Ames Research Center
MS T27A-1
Moffett Field, CA 94035

1 Introduction

The current common wisdom in the U.S. is that the powerful, cost-effective supercomputers
of tomorrow will be based on commodity (RISC) micro-processors with cache memories.
Already, most distributed systems in the world use such hardware as building blocks. This
shift away from vector supercomputers and towards cache-based systems has brought about a
change in programming paradigm, even when ignoring issues of parallelism. Vector machines
require inner-loop independence and regular, non-pathological memory strides (usually this
means: non-power-of-two strides) to allow efficient vectorization of array operations. Cache-
based systems require spatial and temporal locality of data, so that data once read from
main memory and stored in high-speed cache memory is used optimally before being written
back to main memory (see Bailey '93 [1]). This means that the most cache-friendly array
operations are those that feature zero or unit stride, so that each unit of data read from main
memory (a cache line) contains information for the next iteration in the loop. Moreover,
loops ought to be ‘fat’, meaning that as many operations as possible are performed on cache
data—provided instruction caches do not overflow and enough registers are available. If
unit stride is not possible, for example because of some data dependency, then care must be
taken to avoid pathological strides, just as on vector computers. For cache-based systems
the issues are more complex, due to the effects of associativity and of non-unit block (cache
line) size (see Bailey '95 [2]). But there is more to the story. Most modern micro-processors
are superscalar, which means that they can issue several (arithmetic) instructions per clock
cycle, provided that there are enough independent instructions in the loop body. This is
another argument for providing fat loop bodies.

With these restrictions, it appears fairly straightforward to produce code that will run effi-
ciently on any cache-based system. It can be argued that although some of the important
computational algorithms employed at NASA Ames require different programming styles on
vector machines and cache-based machines, respectively, neither architecture class appeared
to be favored by particular algorithms in principle. Practice tells us that the situation is more
complicated. This report presents observations and some analysis of performance tuning for
cache-based systems. We point out several counterintuitive results that serve as a cautionary

reminder that memory accesses are not the only factors that determine performance, and
that within the class of cache-based systems, significant differences exist.

2 Kernel code

The most important flow solver program in use at NASA Ames is OVERFLOW, based on
an Alternating-Direction Implicit (ADI) algorithm described by Beam and Warming [3].
The efficient diagonalized form of the algorithm, described by Pulliam and Chaussee [4],
is the most commonly used solver kernel of OVERFLOW. Its essence is captured in the
Scalar Penta-diagonal (SP) program, part of the suite of source codes that make up the
NAS Parallel Benchmarks 2 (NPB 2) [5]. SP constitutes a stress test on the memory system
of the computer, since there are fairly few operations per grid point to be executed in any
one loop of the code. The most critical part of the code is the line solver, which solves
independent systems of linear equations associated with grid lines. Since there are three
families of grid lines in three-dimensional space, there are also three different solver routines
for the three so-called factors. We use these three routines, with the generic names x-loop,
y-loop, and z-loop, respectively, as examples of codes to be run on cache-based systems.
They are described in Appendix A. Successive cumulative optimizations attempted in these
codes, indicated by suffixes 1 through 5, are as follows.

1. Baseline, which is now contained in NPB 2.

2. Eliminate temporaries for incremented indices, i.e. i+1, i+2, j+1, j+2, k+1, k+2
instead of i1, 12, j1, j2, k1, k2. This enables good compilers to do better register
allocation.

3. Unroll inner loops of fixed length (m=1,2,3). This reduces loop overhead and register
demand.

4. Move the fourth index (m) of the arrays rhs, 1hs to the first position. This improves
spatial data locality, since each iteration of the inner loop uses all three elements of
rhs and all five elements of 1hs at each grid point.

5. Unroll the first available loop (j for x-1loop, i for y~-loop and z-loop) to a level of
two. This increases the number of independent computations in the inner loop. Notice
the location of the assignment fac2 = 1.40/1hs(3,1i,j+1,k). It is moved to the front
of the inner loop, far ahead of the subsequent assignments that make use of fac2, to
improve possibilities for optimal scheduling by the compiler.

In the cases of y-loop and z-1oop there are two more code variations possible that have to
do with the order of the loops. The previous optimizations all employ the so-called canonical
loop nest orderings for x-loop, y-loop and z-loop, namely running index k for the outer
loop, j for the middle loop, and i for the inner loop. But it is most natural computationally
to finish a whole grid line in the inner loop before moving to the next grid line.

6. Use j and k as the running index for y-loop and z-1oop, respectively, while keeping
the unrollings described in optimization 5. This causes large strides in the arrays,
which is generally bad. But the benefit is that there is some overlap in subsequent
iterations, since there is a recursion in the grid line direction in the solver algorithm.
The running index for the middle loop in each of the two loop nests is always i.

7. Use the same natural loop order as in the previous optimization, but eliminate unrolling
optimization 5.

Each subroutine is executed for four grid sizes, i.e. 163, 323, 643, and 80%. To avoid bad strides
(see optimizations 6 and 7), all array grid dimensions are padded by 1. Tests with different
paddings did not produce improvements on the architectures under consideration, and cache
simulations (see Section 5) indicate that no cache lines remain unused when padding is set
to 1. Moreover, when the m-index is moved into the first position, primeness of its size (3 for
rhs and 5 for 1hs) effectively guarantees safe strides. An optimization that was attempted
but that is not reported quantitatively here concerns transposition of the arrays to align the
line solve direction with the second array index (following m). This technique, which can pay
off well when many operations are performed at each grid point, such as in FFTs on large
grids, obtained very poor results for SP due to the sparseness of computations.

3 Machines

The machines investigated in this report are mainly RISC processors: MIPS R5000, MIPS
R8000, MIPS R10000, DEC Alpha EV4, DEC Alpha EV5, IBM RS6000, Sun UltraSparc 1.
The one CISC architecture is the Intel PentiumPro. A number of these processors are cur-
rently used in parallel platforms: MIPS R8000 in the SGI PowerChallenge Davinci cluster
at NASA Ames, MIPSR10000 in the SGI Origin2000 cluster at the University of Urbana
Champaign, DEC Alpha EV4 in the Cray T3D Cosmos system at the Jet Propulsion Labo-
ratory, DEC Alpha EV5 in the Cray T3E machine at the National Energy Research Scientific
Computing Center in Berkeley, IBM RS6000 in the SP Wide Node Babbage system at NASA
Ames, and Sun UltraSparc I in the University of Berkeley Network of Workstations (NOW)
system.

The PentiumPro is being considered for a new massively parallel system called Whitney,
currently under construction at NASA Ames. Machine specifics are summarized in Table
1. They reflect the alterations made to the processors to integrate them in their parallel
platforms. In particular, the DEC Alpha EV4 and EV5 modified by Cray Research lost
their off-chip second-level and third-level caches, respectively, for numerical processing. One
of the most important system parameters, the memory bandwidth, is not listed, because
vendor-provided data are generally inconclusive. It is assumed that memory bandwidth is
always an active constraint on processor performance.

On all machines we select the highest acceptable level of optimization for the Fortran com-
piler (generally -03). Native Fortran compilers are available for all platforms, except the
PentiumPro. On the latter system the compiler from the Portland Group is used.

4 Measured performance results

Performances of the processors—and compilers—tested, in MFlop/s (millions of floating point
computations per second), are presented in Appendix B. They are obtained by running each
of the loop nests in Appendix A a number of times on each system, ignoring the first iteration
to eliminate start-up overhead, and determining the minimum of the execution times for the
remaining iterations to eliminate noise.

The results for each processor are shown in three different ways, as indicated in the schematic
in Figure 1. The first display (Figure a) scales the performance within each set of computa-
tions for a certain grid size and a certain factor (z, y, or z). Maximum performance relative
to the other optimization strategies for the same grid size and factor is indicated in black,
minimum in light gray. This type of display allows the comparison of a particular optimiza-
tion across all grid sizes and factors; for example, if row 3 is black for the y-factor for a
certain processor (as shown in Figure 1a), then unrolling of the m-loop, in conjunction with
optimizations 2, guarantees optimal performance of that y-factor. If rows 3 for the z-factor
and z-factor were black as well, then unrolling the m-loop would be a generally optimal
strategy for that processor.

The second display (Figure b) scales the performance within each set of computations for a
certain factor (z, y, or z). This allows the easy assessment of the influence of grid size (and
hence of array size) on performance. For example, if black blocks occur only in the left few
columns of figure b (as shown in Figure 1b), then the processor’s performance apparently
reduces when the problem grows too large to fit completely in the cache.

The third display (Figure c) scales the performance within the whole set of computations
for each processor. This facilitates the combined assessment of cache size and stride on the
performance. Factor z features the smallest stride, and z the largest, even when the loop
ordering is theoretically optimal (outer loop k, then j, and inner loop i). This may be borne
out by the performance results if the maximum performance is obtained for the z-factor, as
suggested in Figure lc.

Note that the absolute magnitudes of the performance numbers are the same for correspond-
ing cases in each set of three figures a, b and c; it is only the shading that differs. Some

Table 1: Processor specifications summary

Name RAM | Ll-cache | L2-cache | cache line | associativity | CPU Peak
MBytes | KBytes | KBytes Bytes MHz | MFlop/s
R5000 64 32i+32d 0 32 2 150 300
R8000 4096 16i+16d 4096 512 4 90 360
R10000 4096 32i+32d 4096 128 2 195 390
EV4 8 8i+8d 0 32 1 150 300
EVS 8 8i+8d 96 32 3 300 600
RS6000 128 32i 256 256 4 66 267
PPro 128 8i+8d | 256/512 32 4 200 200
Sparc 1024 161+16d 512 64 1 167 334

interesting observations can be made, based on the performance figures.

MIPS R5000. Figure 2a shows a marked improvement for unrolling the m-loop for the
z-factor, and, to a lesser extent, for the y- and z-factors. Making m the first array index
gives a substantial improvement for the y-factor and also some for the z-factor, but reduces
performance for the z-factor. And, counterintuitively, the z-factor benefits most from the
natural, large-stride loop ordering, as opposed to the canonical ordering.

MIPS R8000. Figure 3a shows that unrolling the i-loops for the y- and z-factors greatly
deteriorates performance, hinting at a problem with the allocation of registers for the fattened
loop body. Figure 3b clearly demonstrates the reduced processor performance for large grids
that do not fit completely in cache (sizes 64 and 80). Apparently, the memory bandwidth
is not sufficient to fill the cache fast enough from main memory. Finally, Figure 3c reveals
that the generally most cache-friendly z-factor code performs more poorly than the y- and
z-factors. This may be caused by the interleaved structure of the cache.

MIPS R10000. Figure 4a shows a strong dependence of problem size on the best optimiza-
tion strategy. For small grids making m the first array index greatly improves performance,
but this optimization is completely counterproductive for large grid sizes. In either case, the
greatest relative performance improvement is obtained by the virtually trivial optimization
of unrolling the m-loop. Figure 4b again indicates a memory bandwidth problem. Unlike
for the MIPS R8000, the z-factor now exhibits the best performance again among all three
factors, as evidenced by Figure 4c.

IBM RS6000. Figure 5a shows, somewhat surprisingly, that elimination of the auxiliary
variables 11 and i2 in the z-factor is beneficial on the RS6000, whereas a similar program
change for the y- and z-factors has a negative effect. In addition, we notice that the best
performance for the z-factor is obtained for a partially unrolled j-loop, whereas optimal
performance for the y- and z-factors is achieved for without unrolling of the -, j-, and k-
loops. Finally, moving the m-index proves positive for the x-, neutral for the y-, and negative
for the z-loop. From Figure 5b we conclude that there is a relatively small effect of grid size
on performance, indicating that the memory bandwidth is sufficient to feed the cache.

INTEL PENTIUMPRO 200 MHz. Figure 6a demonstrates that there is great sensitivity to
problem size with respect to the optimizations of the z-factor. But more importantly, Figure
6c shows that, with proper tuning, a performance of about 20 Mflops/s can be maintained
for a nontrivial floating point computation on this processor. This places the PentiumPro
squarely in the scientific workstation performance range.

DEC ALpHA EV4. Evidently, the z-factor performance improves through the unrolling of
the m-loop, whereas y- and z2-factor performances deteriorate under the same code change,
as evidenced by Figure 7a. It also shows, in contrast with, for example, the RS6000, that
the best performance is obtained for a partially unrolled j-loop for the z-factor, but for
completely rolled up i-loops for the y- and z-factors. We also observe in Figure 7c that the
best results overall are obtained for the z-factor with m as the first array index, which may
be explained by the small cache of the machine—as modified by Cray Research—and the
(perceived) good data locality of this code variation.

DEC ArLpHA EV5. For this DEC chip with a larger (secondary) cache the performance

of the y-factor degrades significantly when switching to the natural loop order, whereas for
the z-factor the effect is mixed. The largest performance improvement for all factors comes
from moving the m-index to the first array position, with unrolling the i- or j-loops having
little or no positive effect, as follows from Figure 8a. As for the EV4, the EV5 again shows
best overall behavior for the z-factor with m as the first array index (Figure 8c).

SuN ULTRASPARC I. From the fairly smooth distribution of performances across columns in
Figure 9a we deduce that the UltraSparc is not very sensitive to code optimizations by the
user, except for the very smallest grid size that fits entirely in the cache. Also notice that
whereas unrolling the i-loop did not help improve the performance of the z-factor, it was
necessary, combined with natural loop ordering, for best performance of the y- and 2-loops.
A quick glance at Figure 9b shows that performance degrades drastically as soon as the
problem no longer fits entirely in cache, again pointing to a lack of memory bandwidth.

There are many ways in which the information in Figures 2a through 9a can be summarized.
We choose a simple one for Table 2. For each processor we count the number of grid sizes
for which a particular optimization technique is superior over all others. The sum of these
numbers over all processors is listed as total. The number of processors for which each
particular optimization is optimal for all grid sizes is listed as unanimous.

Table 2: Summary of processor performance

Name z-factor y-factor z-factor
optimizations optimizations optimizations

1 23 4 5{1 23 4 5 6 7|1 2 3 45 6 7
R5000 000 0 4/00 0 0 3 10|/00©O0O06O0 4 O
R8000 0o 04 0 0/{0 0 20 0 0 2{00 2 00 0 2
R10000 0 02 1 1/00 20 0 2 0/002©00 2 0
RS6000 0o 00 0 4/0 0 00 0O O0400O06©O00O0 1 3
PentiumPro {0 0 0 4 0{0 0 0 4 0 0 0j0 O 0 0 0 O 4
DEC EV4 0O 00 4 0/0 000 0O 40/00©O0O0O04 O
DEC EV5 0O 00 4 0/0 0 0O0 4 0O0(00O0O0Z2 0 2
UltraSparc |0 0 0 4 0|0 0 O 0 4 0 0/0 1 0 0 0 3 O
total 0 0 6 17 9/0 0 4 4 11 7 60 1 4 0 2 14 11
unanimous [0 0 1 4 2|0 0 0 1 2 1 1(0 0 0 0 0 2 1

Evidently, there is not a single optimization strategy that gives the best performance for
all grid sizes for all processors. But even if we restrict the attention to one processor at a
time, most still do not allow a single uniform optimization strategy. Only the PentiumPro
and the DEC Alpha EV4 chip show consistently best performance (within 1% accuracy) for
fixed strategies z-4, y-4, z-7 and z-4, y-6, 2-6, respectively. If we rule out unrolling the i,
j, or k loops (y-5,6, z-5,6), then the generally most acceptable single optimization strategy
is: z-4, y-7, 2-7, i.e. the canonical loop ordering, with large strides for the y- and z-factors,
and m as the first array index. We notice that the scatter in the optimal tuning strategies is
substantially larger for the y- and z-factors than for the z-factor.

5 Cache simulations

It follows from the results in the previous section that intuition is a poor guide to performance
tuning. More detailed knowledge and insight are needed to design a good optimization
strategy. In order to produce code with portable performance characteristics, we limit the
type of knowledge to enter into the investigation to relatively easily quantifiable parameters
on arbitrary systems. Specifically, we choose to simulate the cache behavior of the same
set of processors as before to understand better the observed computational results. The
model for the simple cache simulator is as follows. The highest-level cache is assumed to
constitute the memory bottleneck; its parameters are used for the simulator. In case of
set-associative caches a Least Recently Used (LRU) replacement policy of cache lines is
employed. No knowledge about the cache other than line length, number of lines, and
associativity, is incorporated; For example, the effects of cache memory interleaving, and
of sophisticated strategies such as early restart and requested word first, are not taken into
account. Moreover, we assume a separate data cache, since unified caches require vastly more
information for simulation, including the assembler version of the code. We simply transform
the assignments in the source code by hand to calls to the cache simulation routines. Only
memory loads are modeled. The structure of the computational loops is such that writes
are always done to memory locations that are already in cache, which means that no cache
lines need to be flushed to accommodate write operations. We ignore the effects of writing
through the cache to main memory. This is a potentially serious simplification. Depending
on the buffering strategy and the implementation of the cache controller, substantial stalling
may be incurred due to write operations.

Results of the simulations are presented in Appendix C. Each figure shows the percentage
of memory accesses (fetches) that cause cache misses for the optimizations described in
Appendix A (all code fragments exhibit the same total number of array references). Tallying
cache hits and misses starts after each loop nest has been executed once. This fills the cache
with (potentially) useful data beforehand, which is equivalent to the preconditioning in the
actual performance measurements described in Section 4. Note that optimization strategies
1-2, 3-8, y-2, y-3, z-2 and 2-3 are not displayed, since these feature exactly the same memory
access patterns as z-1, y-1 and z-1, respectively. Shading is applied in the same fashion as
in Figures a of Appendix B. The darker the shading, the fewer cache misses. Since we expect
the percentage of cache misses to be smaller for better performing code fragments, we call
this relation between the two a positive correlation.

MIPS R5000. Figure 10 exhibits a positive correlation between performance and cache
misses for the z- and z-factors, but a (mostly) negative one for y. We also notice that
there is a large difference in the performance of optimizations x-1 through x-3, although
the memory reference patterns are identical. Finally, we observe that the number of cache
misses for the z-factor is slashed in three—somewhat unexpectedly—by using the natural
loop ordering.

MIPS R8000. Figure 11 features a very small miss rate (less than 1%), and virtually no
correlation between performance and cache misses.

MIPS R10000. Again there is very poor correlation between processor performance and

miss rate (Figure 12), and in the case of a grid size of 32 points the correlation is even
negative.

IBM RS6000. As in the case of the MIPS R5000, the number of cache misses for the
z-factor is reduced significantly by reverting to the natural loop order for large grids. Figure
13 indicates a fair correlation between performance and cache misses overall.

INTEL PENTIUMPRO 200 MHz. Although there is a clear positive correlation between cache
misses and performance for the z-factor, Figure 14 reveals a negative and mixed correlation
for the y- and z-factors, respectively. And again, natural loop ordering benefits the memory
access pattern of the z-factor.

DEC ALpuHA EV4. Figure 15 confirms a positive correlation between cache misses and
performance for the z-factor, and negative and mixed correlations for z and y. It is of some
interest to note the erratic simulated cache behavior for the y-factor, with y-7, y-1, y-7 and
y-6 being the optimal strategies for grid sizes 162, 323, 64% and 803, respectively.

DEC ALpHA EV5. Figure 16 points out that reductions of cache misses by up to a factor
of 3 for the larger grids of the z-factor by switching to the natural loop ordering has no effect
or no positive effect on the performance. The y-factor shows widely varying performance
figures for identical numbers of cache misses.

SUN ULTRASPARC 1. Performance of the UltraSparc for small grids (163) varies significantly,
especially for the z-factor, although the problem fits entirely in the cache, and no misses
occur. For larger grids the number of cache misses varies widely for the z-factor, with little
difference in processor performance.

Evidently, the simulated cache behavior for the processors studied correlates poorly with
the actually observed performance. It can be argued that this is due to the limitations of
the simulator, and that better correlations can be obtained by incorporating more detailed
characteristics of the particular machines. But since we are interested in producing portable
code, introducing even more information into the program construction will make this task
virtually impossible. We also notice that there is significant—and nontrivial-—dependence
of the processor performance on the problem size, which is generally not known at compile
time. This makes the task of writing portable codes even harder. Moreover, the cache miss
rate of the simple piece of code investigated in this paper is a complex function of loop
organization, problem size, and cache structure, even if only very few parameters are used
to describe the cache.

6 Conclusions

We conclude that tuning codes for high performance on commercial cache-based processors
available today is a process that requires so much knowledge and information about the
entire configuration of user program, problem parameters, system software, and hardware
organization, that it is practically impossible to produce ‘good cache code’. By this we mean
that it is not possible to tell whether a piece of numerical software will perform well by
using textual inspection and a few high-level parameters of the system under consideration;
General optimization strategies designed to take advantage of cache do not alone yield high

performance. Other factors, such as software pipelining, need to be considered as well when
designing efficient codes, but this will hamper portability of codes between architectures.

Finally, it should be noted that extreme care must be taken to extend the optimization
results obtained from the loops in Appendix A to entire application programs in case data
lay-outs are changed. For example, it may appear natural to move the m-index to the front
of the rhs and 1hs arrays to increase cache data reuse. But for loops in which only, say, the
first element of rhs is used, performance may suffer, due to ‘gaps’ in the array.

References

[1] D.H. Bailey, RISC Microprocessors and Scientific Computing, Proc. Supercomputing
'93, IEEE Computer Society, 1993, pp. 645-654.

[2] D.H. Bailey, Unfavorable Strides in Cache Memory Systems, Scientific Programming,
vol. 4 (1995), pp. 53-38

[3] R.M. Beam, R.F. Warming, An Implicit Factored Scheme for the Incompressible Navier-
Stokes Equations, AIAA Journal, vol. 16 (1978), pp. 393-401

(4] T.H. Pulliam, D.S. Chaussee, A diagonal form of an implicit approzimate factorization
algorithm, Journal of Computational Physics, Vol. 29, p. 1037, 1975

[5] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart,, A. Woo, M. Yarrow,
The NAS Parallel Benchmarks 2.0, NAS Technical Report NAS-95-020, NASA Ames
Research Center, Moffett Field, CA, 1995

Appendix A: Codes

Below follow the source listings of the SP solver fragments used in the performance tests;
only the forward elimination parts of the penta-diagonal line solvers are used. Diagonal-
ization makes it possible to compute three solution values (rhs(..,m=1,3)) per grid point
simultaneously from a single penta-diagonal matrix (1hs). For each of the three factors to
be inverted in the ADI scheme (corresponding to the z-, y-, and z-directions), the same opti-
mizations are performed for corresponding suffixes. For example, z-3, y-3 and 2-& all unroll
inner loops of length three. z-1, y-1 and 2-1 are the actual code fragments used in NPB 2.
Here we only show z-1 through z-5, y-6, and y-7. The other code fragments are easily in-
ferred. Italic typeface is used to indicate which parts of the code fragments are affected by the
optimizations. The dimensions of the arrays are rhs(nx,ny,nz,3) and lhs(nx,ny,nz,5),
respectively, when m is the last index, and rhs(3,nx,ny,nz) and 1hs(5,nx,ny,nz), respec-
tively, when m is the first index.

z-1: NPB 2.2 code
do k=1, nz
do j =1, ny
do =1, nx-2
il=1 +1
i2=1 + 2
faci
1hs(i,j,k,4)
lhs(i,j,k,5)
do m=1, 3
rhs(i,j,k,m) = faci*rhs(i,j,k,m)
end do
lhs(il,j,k,3) = 1lhs(il,j,k,3) - 1lhs(il,j,k,2)*1hs(i,j,k,4)
lhs(il,j,k,4) = lhs(il,j,k,4) - 1lhs(il,j,k,2)*1hs(i,j,k,5)
do m=1, 3
rhs(il,j,k,m) = rhs(il,j,k,m) - lhs(il,j,k,2)*rhs(i,j,k,m)
end do
1hs(i2,j,k,2) = 1hs(i2,j,k,2) - 1hs(i2,j,k,1)*1lhs(i,j,k,4)
1hs(i2,j,k,3) lhs(i2,j,k,3) - 1hs(i2,j,k,1)*1hs(i,j,k,5)
do m=1, 3
rhs(i2,j,k,m) = rhs(i2,j,k,m) - 1hs(i2,j,k,1)*rhs(i,j,k,m)
end do
end do
end do
end do

-

1.40/1hs(i,j,k,3)
facl*1lhs(i,j,k,4)
facl*1lhs(i,j,k,5)

z-2: do not use auziliary variables for incremented indices
do k=1, nz
do j=1, ny
do i=1, nx-2
faci = 1.40/1hs(i,j,k,3)

10

1hs(i,j,k,4)
1hs(i,j,k,5)
do m=1, 3
rhs(i,j,k,m) = facl*rhs(i,j,k,m)
end do
lhs(i+1,j,k,3) = 1hs(i+7,j,k,3) - 1hs(i+1,j,k,2)*1hs(i,], k,4)
lhs(i+1,j,k,4) = 1hs(i+1,j,k,4) - lhs(i+1,j,k,2)*1lhs(i,j,k,5)
do m=1, 3
rhs(i+1,j,k,m) = rhs(i+1,j,k,m) - 1hs(i+1,j,k,2)*rhs(i,j,k,m)
end do
1hs(i+2,j,k,2) = 1hs(i+2,j,k,2) - lhs(i+2,j,k,1)*1hs(di,j,k,4)
1hs(i+2,j,k,3) = lhs(i+2,j,k,3) - 1hs(i+2,j,k,1)*1hs(i,j,k,5)
do m=1, 3
rhs(i+2,j,k,m) = rhs(i+2,j,k,m) - lhs(i+2,j,k,D*rhs(i,j,k,m)
end do
end do
end do
end do

faci*lhs(i,j,k,4)
faci*1hs(i,j,k,5)

z-3: unroll small inner loops of length 3
do k=1, nz
do j =1, ny
do 1i=1, nx-2
facl

1.d0/1hs(i,j,k,3)
lhs(i,j,k,4) faci*lhs(i, j,k,4)
l1hs(i,j,k,5) faci*lhs(i,j,k,5)
ths(i,j,k,1) = facl*rhs(ij,k,1)
rhs(i,j,k,2) = facl*rhs(i,5,k,2)
ths(i,j,k,3) = facl*rhs(i,j,k,3)
lhs(i+1,j,k,3) = 1hs(i+1,j,k,3) - 1hs(i+1,j,k,2)*1hs(i,j,k,4)
lhs(i+1,j,k,4) = lhs(i+1,j,k,4) - lhs(i+1,j,k,2)*1hs(i,j,k,5)
rhs(i+1,j,k,1) = rhs(i+1,5,k,1) - ths(i+1,5,k 2)*rhs(i,5,k,1)
ths(i+1,j,k,2) = rhs(i+1,5,k,2) - lhs(i+1,5,k,2)*rhs(i,5,k,2)
rhs(i+1,5,k,8) = rhs(i+1,5k,8) - lhs(i+1,5,k 2)*rhs(3,5,k,3)
1hs(i+2,j,k,2) = 1hs(i+2,j,k,2) - 1hs(i+2,j,k,1)*lhs(i,j,k,4)
1hs(i+2,3,k,3) = lhs(i+2,j,k,3) - 1hs(i+2,j,k,1)*1hs(i,j,k,5)
rhs(i+25,k, 1) = rhs(i+8,j,k 1) - ths(i+2,j,k 1)*rhs(i,j,k,1)
rhs(i+2,j,k,2) = rhs(i+2,j,k,2) - lhs(i+2,j,k,1)*rhs(i;jk,2)
rhs(i+2,5,k,3) = rths(i+2,5,k,3) - lhs(i+2,5,k,1)*rhs(i,j,k,3)

end do
end do
end do

z-4: move last index of rhs and lhs to the front
do k=1, nz
do j=1,ny
do i=1, nx-2

11

facl = 1.d0/1hs(3,i,j,k)
lhs(4,i,j,k) = faci*lhs(4,i,j,k)
lhs(5,i,j,k) = faci*lhs(5,1,j,k)

rhs(1,i,j,k) =
rhs(2,i,j,k) =
rhe(3,i,j,k) =
1hs(3,i+1,j,k) =
1hs(4,i+1,j,k) =
rhs(1,i+1,j,k) =

facl*rhs(1,i,j,k)
facl*rhs(2,1,j,k)
faci*rhs(3,i,j,k)
1hs(3,i+1,j,k) - 1hs(2,i+1,j,k)*1hs(4,i,j,k)
1hs(4,i+1,j,k) - 1hs(2,i+1,j,k)*1hs(5,1,j,k)
rhs(1,i+1,j,k) - 1hs(2,i+1,j,k)*rhs(1,1i,j,k)

rths(2,i+1,j,k) =
rhs(8,i+1,j,k) =
1hs(2,i+2,j,k) =
1hs(3,i+2,j,k)

rhs(2,i+1,3,k) -
rhs(3,i+1,3,k) -
1hs(2,i+2,j,k) -
= 1hs(9,i+2,5,k) -

rhs(1,i+2,j,k) = rhe(1,i+2,j,k) -
rhs(2,i+2,j,k) = rhs(2,i+2,j,k) -
rhs(3,i+2,j,k) = rhs(3,i+2,j,k) -
end do
end do
end do

z-5: unroll j-loop to a level of 2
do k=1, nz
do j=1, ny, 2
do i=1, nx-2
faci
fac2
1hs(4,i,5,k) =
1hs(5,1,j,k) =
rhs(1,i,j,k) =
rhs(2,i,j,k)
rhs(3,1,j,k)
1hs(3,i+1,3,k)
1hs(4,i+1,j.k) =
rhs(1,i+1,j,k) =
rhs(2,i+1,j,k) =
rhs(3,i+1,j,k)
1hs(2,i+2,3,k)
1hs(3,i+2,j,k)
rhs(1,i+2,j,k)
rhs(2,i+2,j,k)
rhs(3,i+2,j,k)
1hs(4,i,j+1,k)
1hs(5,i,j+1,k)
rhs(1,1i,j+1,k)
rhs(2,1i,j+1,k)
rhs(3,i,j+1,k)
1hs(3,i+1,j+1,k)

l1hs(2,i+1,j,k)*rhs(2,1,j,k)
1hs(2,i+1,j,k)*rhs(3,1,5,k)
lhs(1,i+2,j,k)*1hs(4,1,j,k)
lhs(1,i+2,j,k)*1hs(5,i,],k)
1hs(1,i+2,j,k)*rhs(1,1,j,k)
lhs(1,i+2,j,k)*rhs(2,i,j,k)
lhs(1,i+2,j,k)*rhs(3,i,j,k)

1.d0/1hs(3,1,3,k)
1.d0/1hs(3,i,j+1,k)
faci*lhs(4,i,j,k)
fac1*1hs(5,i,j,k)
faci*rhs(1,i,j,k)

1hs(4,i+1,3,k)
rhs(1,i+1,5,k)
rhs(2,i+1,3,k)

= rhs(3,i+1,j,k)
= 1hs(2,i+2,j,k)
= 1hs(3,i+2,3,k)
= rhs(1,i+2,j,k)
= rhs(2,i+2,j,k)
= rhs(3,i+2,j,k)
= fac2%lhs(4,1i,j+1
= fac2*1lhs(5,i,j+1,k)
= fac2*rhs(1,1,j+1,k)
= fac2*rhs(2,1i,j+1,k)
= fac2*rhs(3,1i,j+1,k)
1hs(3,i+1,j+1,k) - 1hs(2,i+1,j+1,k)*1hs(4,i,j+1,k)

12

= faci*rhs(2,i,j,k)
= faci*rhs(3,1i,j,k)
= 1hs(3,i+1,j,k) ~ 1hs(2,i+1,j,k)*1hs(4,i,j,k)

lhs(2,i+1,j,k)*1hs(5,i,j,k)
1hs(2,i+1,j,k)*rhs(1,i,3,k)
1hs(2,i+1,j,k)*rhs(2,1,j,k)
lhs(2,i+1,j,k)*rhs(3,1,j,k)
1hs(1,i+2,j,k)*1hs(4,i,j,k)
l1hs(1,i+2,j,k)*1hs(5,i,j,k)
lhs(1,i+2,j,k)*rhs(1,i,j,k)
1hs(1,i+2,j,k)*rhs(2,i,j,k)
1hs(1,i+2,j,k) *rhs(3,1,j,k)
k)

lhs(4,i+1,j+1,k) lhs(4,i+1,j+1,k) 1hs(2,i+1,5+1,k)*1hs(5,i,j+1,k)
rhs(1,i+1,j+1,k) = rhe(l,i+1,j+1,k) 1hs(2,i+1,5+1,k)*rhs(1,1i,j+1,k)
rhs(2,i+1,j+1,k) = rhs(2,i+1,j+1,k) 1hs(2,i+1,7+1,k)*rhs(2,1,j+1,k)
rhs(3,i+1,j+1,k) = rhs(3,i+1,j+1,k) 1hs(2,i+1,j+1,k)*rhs(3,1,j+1,k)
1hs(2,i+2,5+1,k) lhs(2,i+2,j+1,k) lhs(1,i+2,j+1,k)*1hs(4,1,j+1,k)
1hs(3,i+2,j+1,k) 1hs(3,i+2,j+1,k) lhs(1,i+2,j+7,k)*1hs(5,i,j+1,k)
rhs(1,i+2,j+1,k) = rhs(1,i+2,j+1,k) lhs(1,i+2,j+1,k)*rhs(1,i,5+1,k)
rhs(2,i+2,j+1,k) = rhs(2,i+2,j+1,k) lhs(1,i+2,j+1,k)*rhs(2,1,5+1,k)
rhs(3,i+2,j+1,k) = rhs(3,i+2,j+1,k) 1hs(1,i+2,j+1,k)*rhs(3,1,j+1,k)
end do
end do

end do

y-6: canonical loop order, i-loop unrolled to level 2
do k=1, nz
do i=1, nx, 2
do j=1, ny-2

fact = 1.d0/1hs(3,1i,5,k)
fac2 = 1.d0/1hs(3,i+1,j,k)
lhs(4,i,j,k) = facl*lhg(4,i,j,k)
lhs(5,i,j,k) = fac1*1hs(5,i,j,k)

rhs(1,1,j,k)
rhs(2,1,j,k)
rhs(3,1,j,k)
1hs(3,1,j+1,k)
1hs(4,i,j+1,k)
rhs(1,i,j+1,k)
rhs(2,1i,j+1,k)
rhs(3,1,j+1,k)
lhs(2,i,j+2,k)
1hs(3,i,j+2,k)
rhs(1,i,j+2,k)
rhs(2,i,j+2,k)
rhs(3,1,j+2,k)
lhs(4,t+1,j,k)
1hs(5,i+1,j,k)
rhs(1,i+1,j,k)
rhs(2,i+1,j,k)
rhs(3,i+71,j,k)
1hs(3,i+1,j+1,k)
1hs(4,i+1,j+1,k)
rhs(1l,i1+1,j+1,k)
rhs(2,i+1,j+1,k)
rhs(3,:+1,j+1,k)
1hs(2,i+1,j+2,k)
1hs(3,i+1,j+2,k)

= faci*rhs(1,i,j,k)
= facl*rhs(2,i,j,k)
= facl*rhs(3,1i,j,k)
= 1hs(3,1,j+1,k) -
= lhs(4,1i,j+1,k) -
= rhs(1,1i,j+1,k) -
= rhs(2,i,j+1,k) -
= rhs(3,1i,j+1,k)
= 1hs(2,i,j+2,k) -
= 1hs(3,i,j+2,k) -
= rhs(1,i,j+2,k) -

rhs(2,1,j+2,k) -
rhs(3,i,j+2,k) -
fac2+*lhs(4,:+1,j,
fac2*1lhs(5,:+1,j,
fac2*rhs(1,i+1,j,
fac2*rhs(2,:+1,j,
fac2+*rhs(3,:+1,j,
1hs(3,i+1,j+1,k)
1hs(4,i+1,j+1,k)
rhs(1,i+1,j+1,k)
rhs(2,i+1,j+1,k)
rhs(3,i+1,j+1,k)
1hs(2,i+1,j+2,k)
1hs(3,i+1,j+2,k)

13

1hs(2,i,j+1,k)*1hs(4,i,j,k)
1hs(2,i,j+1,k)*lhs(5,i,j,k)
1hs(2,i,j+1,k)*rhs(1,1i,j,k)
1hs(2,i,j+1,k)*rhs(2,1i,j,k)
1hs(2,1,j+1,k) #rhs(3,i,j,k)
1hs(1,i,j+2,k)*1hs(4,i,j,k)
1hs(1,i,j+2,k)*1hs(5,1,j,k)
lhs(1,i,j+2,k)*rhs(1,i,j,k)
1hs(1,i,j+2,k)*rhs(2,1i,j,k)
l1hs(1,i,j+2,k)*rhs(3,1,j,k)

k)

k)

k)

k)

k)

- 1hs(2,i+1,j+1,k)*1hs(4,i+1,5,k)
- lhs(2,i+1,j+1,k)*1hs(5,i+1,j,k)
- 1hs(2,i+1,j+1,k)*rhs(1,i+1,j,k)
- 1hs(2,i+1,j+1,k)*rhs(2,i+1,j,k)
- 1hs(2,i+1,j+1,k)*rhs(3,i+1,j,k)
- 1hs(1,i+1,j+2,k)*1hs(4,i+1,j,k)
- 1hs(1,i+1,j+2,k)*1hs(5,:+1,j,k)

rhs(1,i+1,j+2,k) = rhs(1,i+1,j+2,k) - lhs(1,i+1,j+2,k)*rhs(1,i+1,j,k)

rhs(2,i+1,j+2,k) = rhs(2,i+1,j+2,k) - 1hs(1,i+1,j+2,k)*rhs(2,i+1,j,k)
rhs(3,i+1,j+2,k) = rhs(3,i+1,j+2,k) - lhs(1,i+1,j+2,k)*rhs(3,i+1,j,k)
end do
end do

end do

y-7: canonical loop order, rolled-up i-loop

do k=1, nz
do i=1, nx
do j =1, ny-2
facl = 1.d0/1hs(3,1,j,k)
lhs(4,1,j,k) = facl*lhs(4,1,j,k)
1hs(5,1,j,k) = faci*lhs(5,1i,j,k)
rhs(1,i,j,k) = facl*rhs(1,i,j,k)
rhs(2,i,j,k) = facl*rhs(2,i,j.k)
rhs(3,1i,j,k) = faci*rhs(3,1,j,k)
1hs(3,i,j+1,k) 1hs(3,1i,j+1,k) - 1hs(2,i,j+1,k)*1hs(4,i,j,k)
lhs(4,i,j+1,k) = 1hs(4,i,j+1,k) - 1hs(2,i,j+1,k)*1hs(5,1,j,k)
rhs(1,i,j+1,k) = rhs(1,i,j+1,k) - 1hs(2,i,j+1,k) *rhs(1,i,j,k)
rhs(2,i,j+1,k) = rhs(2,i,j+1,k) - 1hs(2,i,j+1,k)*rhs(2,i,j,k)
rhs(3,i,j+1,k) = rhs(3,i,j+1,k) - 1hs(2,i,j+1,k)*rhs(3,1,j,k)
1hs(2,1,j+2,k) = lhs(2,1,j+2,k) - 1hs(1,i,j+2,k)*lhs(4,i,j,k)
1hs(3,1i,j+2,k) = 1hs(3,i,j+2,k) - l1hs(1,i,j+2,k)*1hs(5,i,j,k)
rhs(1,1,j+2,k) = rhs(1l,1i,j+2,k) - 1hs(1,i,j+2,k)*rhs(1,i,j,k)
rhs(2,i,j+2,k) = rhs(2,1i,j+2,k) - lhs(1,1,j+2,k)*rhe(2,1,j,k)
rhs(3,i,j+2,k) = rhs(3,i,j+2,k) - lhs(1,i,j+2,k)*rhs(3,1i,j,k)
end do
end do
end do

14

x—factor y—factor z-factor

T

[TelTe]
0

)

64

29 2”5
,.... — | —

04 69 7.01

Grid size
32

c) ranked globally

’ 62
a1 11.

16

Yoo

z-2 671 6.14 6.05 6.01

Y13 15)12.67012.16] |
z-7 (PG I B S

Z-1 6.69 6.12 6.04 6.
Z-5 '7:58 7.05 ~7.1: 7.02

Y1f795§$ﬁi§m

Q 64
82
m 555
=]
2
Y

Z-4 754 7

> > > >

1L
e

[

e

(

|l

| |8

[

b) ranked by factor

64

[

Grid size

32

62

w 77
R Bl Rid
644

[t 1297 19

2EE RS

1234567 1234567
x> >>>x> NNNNNNN

and by factor
||
2 [
L]

x=3 unroll m-loop
x—4 m first index

Appendix B: Measured computational performance
a) ranked by size

Optimization:
x-1 baseline

I

|
(

C I C 1o [[
 k+2 I
|

loop

z-4 m first index

L]
[
L]
]

C I I
L]
[
o
[
I = l

)
L1

[

e B [76) ol [22)
3 & 3l %w4¢,5ﬁ65
88 89 NG
=]~
55 255
28
589 8826
|| 1-1111
4102
22 . =< .0.4.
58 .26
566 6644
82
37] (Y]
— | — 111
345 1234567
> X > > > > >

loop by 2
64
9. 25

y-1 baseline

loop
2 ->Kk+1
Grid size
32

5 unroli i-loop by 2
16
X-1 8.34 8.7 8.86

6 natural loop order
y—7 roll up i-loop
2-1 baseline

2 j1,2->j+1,j+2
z-2 k1

3 unroll m-
7 roll up i-loop

5 unroll j-
4 m first index
2 873 91

|
-
=
Figure 1: Schematic of processor performance presentation; black box signifies maximum

performance within certain range, other gray scales not shown

z-5 unroll i-loop by 2
Zz—6 natural loop order

x-2 i1,2->i+1,
z—3 unroll m-

X—
y_
y_
y.—
y_
y
A
X-
X-
X
X-

Figure 2: Performance (Mflop/s) for MIPS R5000 (SGI Indy)
15

80

2243 17.22 17.27
80

Y [y Xyl
gl 4 aD. ao. B &
@ ,rc- o

2 i

64
64

Grid size
32

Grid size
32
1
{12243 17.2117.26

16
224
16

Z2-6 7.2
z-7 2 BEAE 46.48

Z-5 KK EREX B

Y& 9102.6]105.5F

c)
X
X
X
X
X

c)

f o N)
(o] Q LW N % ~
D ©Qyw of o
<] <
[0) 0 Uy &
.ZM .ZMQW.,N i
n 3 o @
kel MInce ' © —)
c 668 .H% wn N
o &)) g Q) 5 ;
(» _L) e <T1O|r
© 5 2 1 e
% 0 i)
—_ 123 :.un.v7 1234567 _— o™ -
Q >y > > NNNNNNN o X X >

Figure 3: Performance (Mflop/s) for MIPS R8000 (SGI PowerChallenge)

76 33 © ORI <IN N B [solo, B ™ ~ ONLSR
00;;009 S oMk O O o) ﬁS = %
WW Rz 331 g Bl o v BB NS ¥ < B J9E Wma
3 K s T o) ™~ ol T~ - [S [
- 7987 8BHP < NN o) - ._2 < i 0 6 6
0 ﬂ12.?2 RNEE 003 SRR N N R o o o INIE &m» 4% 555
T ooHFE SHAEAEL — N B @ B < M Ee T ~ -+ < e} ~N
N 2288998 v [l O O [eo) o o BRI 99 = 5 S~ |—|o
ic\ 66(” 229 o o5 kA & & ES o gy || 66 | 6 ===l
= - oFEL S E O ||
- ru o DRI © © =} o oS e —|—
rv) 4 o NEIEI N & ES) MM& N %Mm 2|C © © eI
—_ 1234567 TNMTOON ~ TNOTH TN® 567 1234567
© . ' ' [} ' v [© J D) [) 1 _ .
XXXX Y.V.V-V-V.V.V. NNNNNNN XX X X X YY. ZZZZZZZ

Figure 4: Performance (Mflop/s) for MIPS R10000 (SGI Origin2000)
16

Gndsue
16 w

c)
80
X-1 33.94 33.66 33.63 34:22

64

Grid size
32

16

80

64

32
X-133.94 33.66 33.63 34.22

Grid size
X-2 34.7134.35 34.2 35.08

16

a)

33
@ e

1234567

> > > > > >

4 4 4

1234567
ZZZZZZZ

< 4

2

o~

]

(¢4 4 4
4 4 4 2l 4 4

1234567
> > > >

MM
4 4

u
4 4 4

1234567
R

[+2] [32)]
103
444

1234567
ZZZZZZZ

m-

6

- 31

B 895 31.63

Z-1 BB:52 37.27 30.8
Z-2 37.15 36.32 30.4

for IBM RS6000 (SP-WN)

Mflop/s)

(

Figure 5: Performance

a)

NBEIRY
8 o el e
© oo
[SY] Ia] &)

) N
NS ~e e
— | (N[O

O OO
c o S|S|~
ORK ool
82
63
1.1

Grid size
32

Grid size
9

YR
™ g0
w

12345
X X X X X

16

[D[R [D[WO]N
of N[N =
Nitlol=|olole
~— (S (Y] Aod Rl
O] 00D o] D[D
1.0.7.3. .5.8
10
@
8
884 895
olo|a|e oo
4!1.1
567789
ojd|o|x|v]n|w
994644

1234567
> > > > >

mm_-_-

1234567

> > > > >

~ o EIEIPA IR
S 2 Kt S
~ = =)
- [SNE ESVE IS R B
o © FEIB A
= S [l idfs
91099
o 7] ~]
88“““““
Aot Bl o

10 © RIS
o o [=]Eae o]
994 <A ES

1234567

> > > > > > >

MN[0

35
46 68
NN

1234567
N NN NN RN

89 37 N
46 1/_68
NN 11 NN

1234567
NNNRNNRNN

B o oo NS
g N e
pe— ——
i AN
14 5 INING o0 | o
[i771m
<)
Y N & B
IR O <
N o o By
PR 0| < [co| 4] Y
% & MBS
o o Rl fel st
~— v W (oY) (8]
Teywen
NNNNNNN

Figure 6: Performance (Mflop/s) for Intel PentiumPro 200MHz (Whitney)
17

80
5306

9
X-5 EiNE XK ZEE 2

64
3

Grid size
32
3

16
X-1 746. 6.7 6.85 6.73

X-2 T7.46. 6.71 885 6.74

X-4 B2l PR B

c)

Grid size
64 ..
Grid size

32
Mflop/s) for DEC Alpha EV4 (Cray T3D)

(

1234567
NRNNNRNN

ILL
5 O
© o
N <+|2

1234567
ZZZZZZZ

80
80

64

X-1 746 6.7 685 6.73
Figure 7: Performance
64

32
32

Grid size
Grid size

16
16

1234567
>> x>y

a)

[~
2 =319
~— | O

,;
i

s 218

mm @ 2|0

B =3 I3 D~

~ | 0 o] I

e NI ool

=N e 3 o

3 < - wL ,

3 g

8 9

12345
X X X X X

64 -

82.67183.61

102.3§103.1

88 2108 37
69.0177.36

~
@
b3
-
«Q
3
0
b
[»2]
i
-
['¢]
N
X

2
@
:
&
g
B
X

n.
%
&,
B
3
2
-
0
[+ o3
o
wn
N
X

X4
X-5

(Cray T3E)

for DEC Alpha EV5

18

Mflop/s)

(

1234567
> > > > > > >

' [+

i o o - 0

i oZ 0

Tl ﬂ,h [3 3
SOl B3N =
v 7

Figure 8: Performance

Z-2 3740 284 20.75 21.16

Z-1 37.14 24.681 20.72 21.12

o, w N T O
gATLLBY
DTN
NS§ - s
i = 5 mwwm1w1
© N o 3o g v
o
o p N
8 [e)] o) |
6 6 9 5 6
<t 4 [se] 12}
— 12345 1234567 .n/___c._uA.:_un@_l.
O XxXXX >>>>>>> NNNNNNRN

w Mo wEe
0 A0 W0 o= 56
oL 222 - -
0 M0
m49wm“,na
N NNN -
T N®D
< 1o < &
0”38
[ss] (=2 82 OINIO]ID[O]T N
© o® o) ot Lot I Lt R0l
- o~ 7877843
< i<t QI N NN
—~ T N®TW 1234567 TONOTDON
D XX XXX > E>>>> NNNNNNN
0 O © RIE ~OMENN REM o
R e — O ©on
2%@2%3 mum M22 mww,lﬁm1
OO ERRNE Q[0 O\ |0 Bl
t=25cHH B RHR mmm%_m%
—© o wixlel [Tl o BIKe olojokd |o
NN N el o~ Y ook |2k
© [)] WwlN]M
N W B .5 . NN
O QIS SIS
[O | O) 83 82 52,598
© ®© O Rl 7 ONKN< 56
~ « 0 o LIk 88 M~ o
N m <t | <t R 33 NANNNN 33
_ TNOgn TN 4567 49__34
® XxXXX >>>>>>> NNNNN

Figure 9: Performance (Mflop/s) for Sun UltraSparc (Berkeley NOW)
19

Appendix C: Simulated cache performance

Figure 10: Cache misses (%), MIPS R5000

Figure 12:

R10000

Grid size
16 32 64 80
X-1 6.78 6.12 5.83 5.77
Y6 is[507 [5 6] 571
< 5|07 [5 70571

A&l 645 | 5 98] 5 76 EEE
Y-4 663 6.06
Y-5 6.63 6.06
v-6 6.63 6.06 [JIEE

Y-7 6.63 6.06 6.88

7+ I

Z-4 156 189 16.8 16.8
Z-5 156 169 168 16.8

Grid size
16 32 64 80
X-1 R 1.45
X-4 0.229
x5 Nl 0229

Y 0 [005]1 5] 43

v-4 [l 0.229 1.46 1.44
v-5 JJ 0229 1.46 1.44
v-6 Il 0.229 1.46 1.44

Y-7 0.229 1.46 1.44

B¥ 0 [ooo]iis] i3
z4 Bl 0.229 146 1.44
z5 [l 0229 146 1.44

z6 K EER] 146 1.44
z.7 K EER 146 1.44

Cache misses (%),

MIPS

20

Grid size
16 32 64 80

X-1 SIEIEE) 0.369
X-4).369]0.359

D

. I I O O

—

[{e]

[
o8
O

D
=)

v+ NN
vs Nl

[}
W
C
(O

[} =
Wiw
[N IO
(o] §&)

IH
)
W
D
-

Y-6 0. fo.369}0.359
24 o | o Jozedfosse
Z-1 R 0 (). 36940 359

-
o
Prs
o
o

Z-4 8
0

N
4]

3)
| e
fep) Y
[
O
w
i
<o)

o
W
D
[te)
ole
w
o
[

N
o

N
~

<
o8
o)}
(o]
w
o
O

Figure 11: Cache misses (%), MIPS R8000

Grid size
16 32 64 80
X-1 0.636 0.784 0,735 s
X-4 0 725}0. 725
xs

v-4 0.587 (R BNER ORES
v-s Gl R N NS

Y-6 SR{EK] 0.754 0.784
Y-7 SWLE 0.754 0.784

2.+ N I
z+ AR 212 211
z5 I EED 212 2.1
Z.6 0.587
rAX: 140 764)0.72500.725

Figure 13: Cache misses (%), IBM RS6000

Grid size Grid size

16 32 64 80 16 32 64 80
X-1 398 6.12 5.83 5.77 &y 6.78]6.12 577
-+ [EEZ) A N I x-« (1 I
X-5 X-5 7.05 6.53 6.31 6.26
Y 2506]5.76] 5 71 v-1 106 [EEEE) KL
Y4 372 606 58 575 v-4 (XQ 103 14. 152
Y5 372 6.06 58 5.75 v-5s EEE 104 14. 152
Y6 373 606 58 575 Y-6
Y-7 373 6.06 58 575 Y-7
-+ | I N 2.+ [N KEX) KEXA KEEA
z-4 Bl 6.06 168 168 z-4 17.6 17.3 17.2 17.2
z5 i} 606 168 168 75 176 17.4 172 17.2
26 374 606 B9 7 o5 [7 00 [6.19] 7 04]
27 374 606 2.7 [() [

Figure 14: Cache misses (%), PentiumPro Figure 15: Cache misses (%), DEC EV4
Grid size Grid size

16 32 64 80 16 32 64 80
X-1 6.78 6.12 583 577 x-1 [3.07 2.88
. (3 | 50 [201[209)
.+ [I N - 18 X] X
8 22 [5.90] 5 76 [571 v-+ I N X X
v-4 6.63 6.06 [} 575 v4 Tl 31 299 298
v-5 6.63 6.06 Y 5.75 v-s] 31 299 298
Y-6 6.63 6.06 589 575 v-6 Ol 3.090 Z9F 296
Y-7 6.63 6.068 591 575 vz 31 299 298
2.+ (Y I 2.+ [I X0 X
Z-4 663 169 168 16.8 z4] 411 689 842
z5 663 169 168 16.8 zs] 411 689 842
PR 06] 56 [575) 4o [ooeor]oos
27 o3 [0 IEK B 2.7 IKC S X X

Figure 16: Cache misses (%), DEC EV5 Figure 17: Cache misses (%), UltraSparc

21

